Generation and characterization of highly vibrationally excited molecular beam.
نویسندگان
چکیده
A simple method to generate and characterize a pure highly vibrationally excited azulene molecular beam is demonstrated. Azulene molecules initially excited to the S4 state by 266-nm UV photons reach high vibrationally excited levels of the ground electronic state upon rapid internal conversion from the S4 electronically excited state. VUV laser beams at 157 and 118 nm, respectively, are used to characterize the relative concentrations of the highly vibrationally excited azulene and the rotationally and vibrationally cooled azulene in the molecular beam. With a laser intensity of 34 mJ/cm2, 75% of azulene molecules absorb a single 266-nm photon and become highly vibrationally excited molecules. The remaining ground-state azulene molecules absorb two or more UV photons, ending up either as molecular cations, which are repelled out of the beam by an electric field, or as dissociation fragments, which veer off the molecular-beam axis. No azulene without absorption of UV photons is left in the molecular beam. The molecular beam that contains only highly vibrationally excited molecules and carrier gas is useful in various experiments related to the studies of highly vibrationally excited molecules.
منابع مشابه
Supercollisions and energy transfer of highly vibrationally excited molecules.
Collisional energy-transfer probability distribution functions of highly vibrationally excited molecules and the existence of supercollisions remain as the outstanding questions in the field of intermolecular energy transfer. In this investigation, collisional interactions between ground state Kr atoms and highly vibrationally excited azulene molecules (4.66 eV internal energy) were examined at...
متن کاملMolecular elimination of Br2 in 248 nm photolysis of bromoform probed by using cavity ring-down absorption spectroscopy.
By using cavity ring-down spectroscopy technique, we have observed the channel leading to Br(2) molecular elimination following photodissociation of bromoform at 248 nm. A tunable laser beam, which is crossed perpendicular to the photolysis laser beam in a ring-down cell, is used to probe the Br(2) fragment in the B(3)Pi(ou)(+)-X(1)Sigma(g)(+) transition using the range 515-524 nm. The ring-dow...
متن کاملAn efficient analytical solution for nonlinear vibrations of a parametrically excited beam
An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...
متن کاملAcetylene-vinylidene Isomerization Dynamics and Influence on Energetics and Collisional Energy Transfer
Acetylene has proven an interesting case study, both for its ubiquity in nature as well as its implementation in industry. It is readily used in a variety of commercial applications and scientific inquiries, and as such, knowledge of its chemical and physical properties is indispensible. Furthermore, its prevalence as an intermediate in combustion reactions makes the study of highly vibrational...
متن کاملProduction of a beam of highly vibrationally excited CO using perturbations.
An intense molecular beam of CO (X(1)Σ(+)) in high vibrational states (v = 17, 18) was produced by a new approach that we call PUMP - PUMP - PERTURB and DUMP. The basic idea is to access high vibrational states of CO e(3)Σ(-) via a two-photon doubly resonant transition that is perturbed by the A(1)Π state. DUMP -ing from this mixed (predominantly triplet) state allows access to high vibrational...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 124 5 شماره
صفحات -
تاریخ انتشار 2006